China Custom Double Diaphragm Flexible Shaft Coupling Flexible Coupling Servo Motor Coupling motor coupling

Product Description

Product Description


The maximum opening value is a circular hole or a tapered hole with a keyway.

Main applications:

DWZ disc eddy current brake is mainly used as load in loading dynamometer equipment. it is experimental apparatus which can measure the dynamic mechanical properties, especially in dynamic loading test whose power value is small or tiny, also can be treated as suction power devices of other dynamic devices.

DW series disc eddy current dynamometer is, is that add device for measuring torque and rotational speed on DWZ series disc eddy current brake, it is experimental apparatus which can measure the dynamic mechnical properties, especial in dynamic loading test whose power value is small or tiny.

CW eddy current brake as a load is mainly used to measure the mechanical characteristics of inspection equipment, it and other control instrument (including loading apparatus, torque speed sensor and torque power acquisition instrument etc.) can be composed of eddy current dynamometer can be used for performance testing of the internal combustion engine, motor, gas turbine, automobile and its dynamic mechanical components, compared with other power measuring device, the CW series power measuring device has the advantages of reliability, high stability and practicability.

Eddy current brake/dynamometer Rated Power Rated torque Rated speed Maximum rotational speed Turning inertia Maximum excitation voltage Maximum excitation Current Cooling water pressure Flow of the cooling water
DWZ/DW-0.75 0.75 5 2000-2600 16000 0.002 80 3 0.1~0.3 1
DWZ/DW-3 3 10 2000-2600 14000 0.003 80 3 0.1~0.3 2
DWZ/DW-6 6 25 2000-2600 14000 0.003 80 3 0.1~0.3 3
DWZ/DW-10 10 50 2000-2600 13000 0.01 80 3 0.1~0.3 4.5
DWZ/DW-16 16 70 2000-2600 13000 0.02 80 3.5 0.1~0.3 6.5
DWZ/DW-25 25 120 2000-2600 11000 0.05 80 3.5 0.1~0.3 15
DWZ/DW-40 40 160 2000-2600 10000 0.1 90 4 0.1~0.3 25
DWZ/DW-63 63 250 2000-2600 9000 0.18 90 4 0.1~0.3 45
DWZ/DW-100 100 400 2000-2600 8500 0.32 120 4 0.1~0.3 60
DWZ/DW-160 160 600 2000-2600 8000 0.52 120 5 0.1~0.3 100
DWZ/DW-250 250 1100 2000-2600 7000 1.8 150 5 0.2~0.4 180
DWZ/DW-300 300 1600 2000-2600 6000 2.7 150 5 0.2~0.4 210
DWZ/DW-400 400 2200 2000-2600 5000 3.6 180 10 0.2~0.4 300
DWZ/DW-630 630 3600 2000-2600 5000 5.3 180 10 0.2~0.4 450


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

motor coupling

Best Practices for Installing a Motor Coupling for Optimal Performance

Proper installation of a motor coupling is essential to ensure optimal performance and reliability of the power transmission system. Follow these best practices when installing a motor coupling:

1. Correctly Match Coupling Type:

Select a motor coupling type that is suitable for the specific application and operating conditions. Consider factors like torque requirements, misalignment tolerance, and environmental factors when choosing the coupling.

2. Ensure Proper Alignment:

Achieve precise alignment between the motor and driven equipment shafts before installing the coupling. Misalignment can lead to premature wear and reduced efficiency.

3. Check Shaft Endplay:

Verify that the shafts have the correct endplay to allow for thermal expansion and contraction. Inadequate endplay can lead to binding or increased stress on the coupling and connected components.

4. Clean Shaft Surfaces:

Ensure that the shaft surfaces are clean and free of any debris or contaminants before installing the coupling. Clean surfaces promote proper coupling engagement and reduce the risk of slippage.

5. Use Correct Coupling Fasteners:

Use the specified fasteners, such as bolts or set screws, provided by the coupling manufacturer. Tighten the fasteners to the recommended torque values to secure the coupling properly.

6. Verify Keyway Alignment:

If the coupling has a keyway, ensure that it aligns correctly with the key on the motor and driven equipment shafts. Proper keyway alignment prevents rotational slippage and ensures efficient torque transmission.

7. Lubrication:

If the coupling requires lubrication, apply the appropriate lubricant as recommended by the manufacturer. Proper lubrication reduces friction and wear on coupling components.

8. Perform Trial Run:

Before putting the system into full operation, perform a trial run to check for any abnormalities or vibrations. Monitor coupling performance and check for leaks, noises, or other signs of issues.

9. Regular Inspection and Maintenance:

Conduct regular inspections and maintenance on the motor coupling and the entire power transmission system. Check for wear, alignment, and any signs of damage, and address any issues promptly.

10. Follow Manufacturer Guidelines:

Always follow the manufacturer’s installation guidelines and recommendations for the specific coupling model. Manufacturer guidelines provide essential information for optimal performance and safe operation.

By adhering to these best practices, you can ensure that the motor coupling functions efficiently and contributes to the overall performance and reliability of the mechanical system.

“`motor coupling

Can Motor Couplings Handle Reversing Loads and Shock Loads Effectively?

Yes, motor couplings are designed to handle both reversing loads and shock loads effectively, making them suitable for a wide range of industrial applications. Here’s how motor couplings can handle these types of loads:

Reversing Loads:

Motor couplings are capable of transmitting torque in both forward and reverse directions. When the driven equipment experiences changes in direction, the motor coupling efficiently transfers torque from the motor to the driven equipment without any loss in performance. This capability is crucial in applications that require frequent changes in rotational direction, such as reversing drives in industrial machinery.

Shock Loads:

Motor couplings, especially those with elastomeric elements, have excellent shock-absorbing properties. When subjected to sudden shocks or impacts, such as during machine start-ups or sudden stops, the elastomeric material in the coupling helps dampen and absorb the impact energy. This protects the motor, driven equipment, and other components in the power transmission system from damage or excessive stress.

The ability of motor couplings to handle reversing loads and shock loads effectively is a result of their flexible and durable construction. Flexible couplings, in particular, can accommodate misalignments and absorb vibrations, further contributing to their ability to handle dynamic loads. However, it’s essential to consider the specific application’s requirements and select the appropriate coupling type and size that matches the expected reversing and shock load characteristics.

Proper installation, alignment, and regular maintenance of motor couplings are also critical factors in ensuring their optimal performance under reversing and shock load conditions. Regular inspection and monitoring can help identify any signs of wear or damage and allow for timely maintenance, contributing to the long-term reliability and efficiency of the power transmission system.

“`motor coupling

Advantages of Using Motor Couplings in Various Mechanical Power Transmission Setups

Motor couplings offer several advantages in mechanical power transmission setups, making them a popular choice in various industries. Here are some key advantages of using motor couplings:

  • Torque Transmission: Motor couplings efficiently transmit torque from the motor to the driven equipment, enabling the machinery to perform its intended task.
  • Misalignment Compensation: Flexible motor couplings can accommodate misalignment between the motor and driven equipment shafts, reducing stress on bearings and increasing the system’s flexibility.
  • Vibration Damping: Some motor couplings, particularly those with flexible elements, can dampen vibrations generated during motor operation, improving the overall system’s performance and reducing wear on connected components.
  • Overload Protection: Motor couplings with torque-limiting features act as overload protection, preventing damage to the motor or driven equipment under excessive load or torque.
  • Noise Reduction: Well-designed motor couplings can help reduce noise and resonance in the system, contributing to quieter and smoother operation.
  • High Torque Capacity: Certain types of motor couplings, such as gear couplings, offer high torque capacity, making them suitable for heavy-duty applications.
  • Misalignment Tolerance: Flexible couplings can handle both angular and parallel misalignment, ensuring smoother power transmission even in dynamic or changing conditions.
  • Adaptability: Motor couplings are available in various types and sizes, making them adaptable to different motor and driven equipment configurations.
  • Protection of Machinery: By dampening shocks and compensating for misalignment, motor couplings protect the machinery from premature wear and damage.
  • Reduced Maintenance: Properly selected and installed motor couplings can reduce maintenance needs by minimizing wear on connected components and improving overall system reliability.

Motor couplings play a critical role in connecting motors to driven equipment, providing smooth and efficient power transmission while protecting the mechanical system from stress and wear. Proper selection and installation of the appropriate motor coupling type are crucial to maximizing these advantages and ensuring optimal performance in power transmission setups.

China Custom Double Diaphragm Flexible Shaft Coupling Flexible Coupling Servo Motor Coupling   motor couplingChina Custom Double Diaphragm Flexible Shaft Coupling Flexible Coupling Servo Motor Coupling   motor coupling
editor by CX 2024-04-15


Leave a Reply

Your email address will not be published. Required fields are marked *