China Good quality CHINAMFG High Quality Electric 0.37kw Crane Geared Motor / End Carriage vacuum pump for ac

Product Description

CHINAMFG High Quality Electric 0.37kw Crane Geared Motor / End Carriage

 

CHINAMFG specialize in manufacturing BMS electric chain hoist, BMG wire rope hoist, BM electric chain hoist, Crane geared motor, End carriage ,Manual chain hoist

Brima brand products include:
* BMS electric chain hoist from 125kg to 1ton
* BMG wire rope hoist from 3.2ton to 80 ton
* BM electric chain hoist from 250 kg to 50ton
* Crane geared motor
* End carriage
* Manual chain hoist

BRIMA Crane geared motor with Buffer :

1. Speed reducer shell adopts good material
Cast Iron manufacturing,with high precision CNC lathe machining,gear made of alloy steel material,vacuum carburizing pumping after careful calibration and abrasive,impact resistance,high safety factor of 5 times or more.

2. Buffer
The use of the flywheel cushion motor producted out of shape,high inertia,start and brake are very smooth,not heavy shaking.

3. Motor
Easy tp heat,high pressure,low noise,high performance,high torque,small current,small volume,strong output power,high frequency can be used.

4. Electromagnet brake
Brake force,bolt directly adjust the braking force,brake pads with high wear resistance,long service life,high safety.

Model Power Poles Output Module Gear Ratio Speed
50hz 60hz
BM-030 0.25KW 4P M3,M3.5,M4 10:1 150rpm 180rpm
0.25KW 6P 90rpm 120rpm
0.4KW 4P 150rpm 180rpm
BM-050 0.4KW 4P M3,M3.5,M4 8.5:1 176rpm 210rpm
0.37KW 6P 115rpm 140rpm
BM-050(QX) 0.75KW 4P 176rpm 210rpm
0.6KW 6P 115rpm 140rpm
BM-100 0.75KW 4P M3,M3.5,M4,M5 7.7:1 188rpm 228rpm
0.6KW 6P 123rpm 148rpm
0.4/0.13KW4P 4P 188/62rpm 228/75rpm
BM-100(QX) 1.1KW 4P 188rpm 228rpm
0.75KW 6P 123rpm 148rpm
BM-150 1.1KW 4P M3.5,M4,M5 13:1 114rpm 135rpm
0.75KW 6P 67rpm 92rpm
0.6/0.2KW 4/12P 114/33rpm 137/45rpm
BM-150(QX) 1.5KW 4P 114rpm 135rpm
1.1KW 6P 67rpm 92rpm
BM-200 1.5KW 4P M4,M5,M6 16:1 92rpm 110rpm
1.1KW 4P 92rpm 110rpm
1.5KW 6P 61rpm 7.3rpm
0.75/0.25KW 4/12P 92/30rpm 110/36rpm
BM-200(QX) 2.2KW 4P 92rpm 110rpm
1.5KW 6P 61rpm 73rpm
BM-300 2.2KW 4P M5,M6 16:1 92rpm 110rpm
1.5KW 6P 61rpm 73rpm
1.5/0.5KW 4/12P 92/30rpm 110/73rpm

FAQ:
 
1.What’s your product range?
We are specialized in manufacturing electric chain hoist,european wire rope hoist,manual electric chain hoist,crane geared motor end carriage and etc.

2.When can I get the quotation?
There have mailbox and other contact ways in website,you can feel free to contace us.If we received your enquiry,we will contact you and ask you something important about the products that you really need,and then we will send you the quotation.

3.What information should I know if I want to get a quotation?
It is very important for customers to know the specifications that you want to purchase.So you should know the lifting height,model,pendant button and etc.So,we can send you the quotation.More details can be provided if you contact us.

4.Why you choose BRIMA?
Prompt reply for inquiry within 24hours;
High capacity and professional technology;
Strict delivery inspection guarantees;
After-sales service for you.

We will do our best to satisfy your needs.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: High Speed
Number of Stator: Three-Phase
Species: YS Series Three-Phase
Rotor Structure: Squirrel-Cage
Casing Protection: Protection Type
Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China Good quality CHINAMFG High Quality Electric 0.37kw Crane Geared Motor / End Carriage   vacuum pump for ac	China Good quality CHINAMFG High Quality Electric 0.37kw Crane Geared Motor / End Carriage   vacuum pump for ac
editor by CX 2024-03-11

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *